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Abstract: Fault tolerant control is considered for a nonlinear aircraft model expressed as a linear parameter-

varying system. By proper parameterization of foreseeable faults, the linear parameter-varying system can
include fault effects as additional varying parameters. A recently developed technique in fault effect parameter
estimation °41 allows us to assume that estimates of the fault effect parameters are available on-line.

Reconfigurability tj2j is calculated for this model with respect to the loss of control effectiveness to assess the

potentiality of the model to tolerate such losses prior to control design. The control design is carried out by
applying a polytopic method [2'31to the aircraft model. An error bound on fault effect parameter estimation is
provided, within which the Lyapunov stability of the closed-loop :;ystem is robust. Our simulation results show
that as long as the fault parameter estimates are sufficiently accurate, the polytopic controller can provide

satisfactory fault-tolerance.

1. Introduction

A linear parameter varying (LPV hereafter) system
is a linear time-varying process whose state-space
matrices are functions of some vector p of time-

varying parameters. An LPV system takes the form

Jc= A(p)x + B(p)u (1.1)
y =c(p)x+o(p)u

where p is assumed to change in a set in a

parameter space. Several recently developed
synthesis methods allow the design of global
control laws for LPV systems [2'3'mq. Some of the
self-scheduled methods furthermore provide

theoretical guarantees in terms of both stability and
performance in the presence of fast time domain
evolution of the scheduled variables. Two such

control design methods are the polytopic LVP
method t2'31and the linear fractional transformation

(LFT) LPV method t_°l. Comparison of these two
methods is made in [9], where it is shown that each
work has its merits and limits.

By properly parameterizing the faults, linear
parameter-varying systems can include fault effects
as additional varying parameters. These parameters
will be called fault effect parameters in this paper.

Therelbre it is possible to formulate a fault tolerant

control design problem as an LPV control problem
where the varying parameters representing faults
are estimated on-line. The algorithm for fault effect

parameter estimation given in [15] has been applied
to est mate additive, multiplicative, and incipient
faults simultaneously [_61.It is assumed in this paper
that fault effect parameter estimates and their error
bounds are available.

To distinguish an LPV system defined in the
conveational sense, and one that include fault effect

parameters, the abbreviation FLPV will be used in
the paper to denote the latter, where F indicates that
some of the varying parameters are fault effect

parameters. Unlike the case of an LPV system,
where the varying parameters are measured in real-
time, .:he only usable FLPV models are ones where
the fault effect parameters are estimated quantities
in real-time. When estimation errors of fault effect

parameters become severe, properties that hold for
LPV systems may no longer hold for FLPV.
Therefore, an attempt is made in this paper to

quant;fy the allowable fault effect estimation errors
in order to apply the LPV control design techniques

to FL?V systems.

An FLPV system takes the form

t This work was supported by grants from NASA(NCC-1-336), and NSF(ECS-9615956).



5c= Af(p,O)x + Bf(p,O)u
(1.2)

y = Cf(p,O)x + Df(p,O)u

where subscript f appears whenever the occurrence

of faults is likely. In comparison with an LPV

system, an FLPV system description has an

additional parameter vector 0 containing fault

effect parameters. Our goal is to achieve fault
tolerant control through the application of the

polytopic LPV control method, where A, B, C, and

D depends affinely on p and on 0. An LFT based

fault tolerant control approach is given in [7]. Three

problems are encountered in applying the LPV

polytopic control design method. First, parametric

modeling of faults becomes necessary, which is

followed by the need to estimate the fault effect

parameters, and then the analysis on the

consequence of the estimation error of fault effect

parameters.

Our approach to solving the above problems is

shown through a design example using the NASA-

Dryden model t61. Section 2 discusses three aspects

of modeling for fault tolerant control. The first is

aimed at establishing the dependence of

A, B, C, and D on parameter vector p, which is

an explicit function of the flight conditions. The
second is aimed at establishing the dependence of

A, B, C, and D on parameter vector 0, which is an

explicit function of the foreseeable faults. The third
is aimed at determining the reconfigurability 1_31

which is a measure of the system ability to allow

performance/stability restoration at the presence of
faults. Section 3 of the paper carries out the control

design for the FLPV form of the NASA-Dryden
model derived in Section 2 following the LPV

polytopic method 121. In the FLPV model used,

however, parameter vector 0 is replaced by its

estimate 0 because only () is known. Section 4

analyzes the effect of such replacement, and

provides estimation error bounds within which

closed-loop system stability is preserved. Section 5

presents the simulation results of a coordinated turn

controlled by an FLPV-controller under several
levels of reduced stabilator control effectiveness.

Conclusions are given section 6.

2. Problem Formulation

There are five control inputs (aileron, symmetric

stabilalor, differential stabilator, rudder, and thrust)

and nineteen measured states in the NASA-Dryden

nonlinear aircraft model 161. For the purpose of

demonstration, a lateral linear parameter-varying

model is extracted with altitude ranging from 17900
feet to 22400 feet and Mach number at 0.62. The

LPV system takes the form of

x = A(p)x+ 8u (2.1)

y=Cx + Du

Here the states are side-slip angle 13, roll rate p,

yaw rate r, bank angle _, left aileron position A t,

left stabilator position S I and rudder position Rua-

The primary control surfaces consist of differential

stabilator (rio), rudder (8R) and aileron (8A). The

main dynamic change resulting from the altitude

change is reflected in the entries a21a25a26, and

a31in matrix A.

A(p) =

"- 0.18 0.07 - 1.0 0.05 - 0.004 - 0.03 0.03"

-28.44+p1-1.95 1.21 0 19.52+2P2 22.27+2P3 1.49

5.24+P4 -0.08 -0.53 0 0.26 1.31 -2.97

0 1 0.07 0 0 0 0

0 0 0 0 - 20 0 0

0 0 0 0 0 -20 0

0 0 0 0 0 0 - 20

-0 0 0 '

o o o

o o o

B= 0 0 10

1(, 0 0

0 20 0

In thi,; case, one scheduling variable has generated

four independent parameters in the A(p) matrix,

where Pl_ [0,0.31], P2 _ [-2.9,0], P3 _ [0,-3.2],

and p4_[-0.86,0]. In general, one could

determine an appropriate set where vector p of an

appropriate dimension resides in a parameter space
corresponding to the range of the scheduling

variables, such as altitude h and Mach number v.

The requirement of affine dependence generally



results in a larger parameter set in a larger

dimensional parameter space. Therefore, close
attention should be paid to the common
dependencies among the entries on the physical
scheduling variables to reduce the number of

independent parameters.
In case B and/or c also contain time-varying

parameters, a pre-filter and post-filter can be added
to form an augmented system where the augmented
A matrix absorbs all time-varying parameters.

2.1 Parametric Modeling of Faults

The example of loss of effectiveness in stabilator
will be used for the discussion of parametric

modeling of faults. Fault modeling turns an LPV
process into an FLPV process. Yhere are various
possibilities that may result in control loss, which
can lead to changes in A matrix, or in B matrix, or
in both A and B matrices [jq. in our example, loss

of stabilator control power causes a much more

significant change in B matrix than that in A
matrix. The FLPV model reflecting this condition is

given by

._= Ai_ _ + Bf(O)u

where ALo)=A(p), and

0 0

0 0

0 0

By(O) = 0 0
0 0

10 + 100

0 20

0

0

0

0

10

0

0

(2.2)

where 0 is the fault effect parameter resulting from
loss of stabilator effectiveness, which can be
estimated in real-time t_4].

2.2 Reconfigurability Computation

In principle, both differential stabilators and
ailerons can effectively control the aircraft roll
movement. It is both interesting and enlightening to
calculate the remaining control authority in the roll
axis after a stabilator fault has occurred. The

concept of reconfigurability measure and its

compu-ation are given in [13]. The computation of
reconfigurability amounts to solving for
controllability gramian wc and observability

gramian WoOf the model for a specific value of 0

value, obtaining the eigenvalues o 12,o 22..... On2 of

WcWo, and determining the reconfigurability,

defined as the smallest oi(O) over a prescribed

range of 0. This is a measure of the ability of the
proces:_ to be controlled to allow the restoration of

performance with respect to the worst fault in a
prescribed set of possible faults. The worst fault is
defined in the sense that the largest effort in terms

of energy is required in order to control the
corresponding faulty system. Figure 3.1 shows the
reconfigurability with respect to a stabilator control
effectiveness loss of up to 80%, while the aircraft

altitud: ranges from 17900 feet to 22400 feet.
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Figure 3.1 System reconfigurability versus altitude
and control loss

It can be seen that the reconfigurability does not

change much as the altitude varies, and it has over
65% ,:ontrol power remaining at an 80% loss of
stabilator effectiveness. This reflects the fact that

ailero as are there to back up the stabilators for the
roll axis control. Study is ongoing with regard to

obtairing a complete picture of reconfigurability
with respect to various subsets of faults.



3.Controller Design

In this section, a polytopic controller 12'31is designed

for a FLPV description for the NASA-Dryden

model where estimate 6 of parameter 0 is assumed

available in real time and replaces 0 in the FLPV
model.

A pre-filter of the form

JCfil = A filX fil + B filU

u = Cfilxfil

and a post-filter of the form

_¢fi2 = Afi2xfi2 + Bfi2Y

= Cfi2xfi2

can be used to remove the dependence of the input-
to-state matrix B and the state-to-output matrix C

on any time-varying parameters I41.In the aircraft
model under consideration, the augmented process

model after introducing the pre-fi Iter becomes

I Jc ]=[ Af(p)jcfil0

1

B f (O)C fil

A fil
[-x][o7+ fi',

Xfil Bill

(3.1)

It can be seen that the only time-varying parameter

dependent matrix is the stability derivative matrix.
The filters must be designed so that its bandwidth is

larger than the bandwidth of the desired closed-loop
system and that the filters themselves must be
stable. Once in the form of (3.1), the design of a
self-scheduled controller can follow the standard

procedure described in the LMI toolbox I81. The
controller has the following form

where n is the dimension of parameter vector p, r

the dimension of parameter vector O, Ak, Bk,, Ck_,

and D_ are the state-space parameters of an H_-

controller designed at ith vertex of the parameter

polytope, subscript k indicates that the parameter is
associated with a controller, instead of the

control led process, o_i (t)'s are computed according

to the ,:onvex decomposition of real time parameter
values at each vertex, which meets the requirement

Fro;1.+, [,1 ,.+,= Z O_i(t) p (t) y.O_i(t)=l, oLi >0
LO(t).l i=1 L6'ct)J' ,=_

where p_s and 6is are the extreme values at ith

vertex of the parameter ploytope, n=4 and r=l in
our example. Note that this setup depends on the

availability of the estimate 0.

In [ 1,(, an adaptive filtering algorithm is developed
for u_;e to estimate the reduction of control
effectiveness in a closed-loop setting. A set of

covariance dependent forgetting factors is
introduced into the filtering algorithm. As a result,
the change in the control effectiveness is
accentuated to help achieve a more accurate

estimate more rapidly. A weighted sum-squared
bias estimate is defined for the change detection.

This method has been applied to fault diagnosis of a
highly nonlinear ship propulsion system I_51,where
addtive, multiplicative, as well as incipient faults

are al parameterized, and the parameters are
estimated. This paper assumes that both fault effect

parameter estimates and their error bounds are
provided in real-time. The effect of time-delay of
the usable estimates is not considered here.

4. Robustness against Estimation Error

This section analyzes the effect of estimation error

6 =o-6
to the closed-loop system, in particular, the closed-

loop stability. To this end, parameter vectorp in the
FLPV system matrices in (3.1) is suppressed.
Suppose that the augmented process equations in
the state-space form are

._= .4tO)x + Bu
(4.1)

y=C_

The affine dependence of A on 0 allows us to write
r

A(O) = A(O = O) + E Oi Ai = Ao (6) + AA('O)
i=l

where
r

Ao(O) = A(O = O) + E0iAi
i=l

and

4



r

aa('6) = E oiai
i=l

The polytopic FLPV controller of appropriate order
is described

xk = Ak(O)Xk + Bk(6)y

u = C k (O)x k + Dk (O)y

The closed-loop system

absence of external input is

J¢cl(t) = Act (O)xct (t)

it is straightforward to show that

01+[.-) O l LoAc_=

= A°_(6) + _ct (o)
where

A°(6)=A<,10=o

(4.2)

state equation in the

(4.3)

o O7D (6)
and

Assume (4.2) is a uniform asymptotic stabilizing

controller to (4.1) with 0 replaced by 0, which

results in the closed-loop state equation

5Cc1(t) = Acl (O)Xcl (t) (4.4)

According to [i], for any continuous and bounded

Q(t)=Q(t)r>o, there exists

I_r (t) = P(t) > o

satisfying

P(t) = -Q(t) - a ° (6) y P(t) - t'(t)A°t (6) (4.5)cl

and

V(t, x) = Xcl (t) T P(t)Xcl (t) (4.6)

is a Lyapunov function with

l?(t) = -x T (t)Q(t)x(t)

Theorem The closed-loop system in (4.3) is

uniformly asymptotically stable if at any t

( r TI 2 + 2[[Pl2Ail[ 2 ) -1
.62 <men _ A i P11 + PIIAi

i=l

where

PII Pl2]=p
P12 P22

is the solution of(4.5) at time t.

Proof. Assume that AOcl(O) is uniformly

asymp_:otically stable. Then (4.6) is a Lyapunov
functicn for the system described by (4.4).

Differentiating (4.6) with respect to xct along the

solution of (4.3) yields

I# = ._¥1T pxcl + XclT pxcl + XclT P._cl

+ xJ (_t ('_)r p + Ptd_t ('O))x¢i
Substil uting (4.5) into the above equation gives

I;"= -xdr QXc#+ xd r (AAc#('6) r P + PAAct (O))xcl

For simplicity Q=I is used. The requirement that

I? < 0 implies

Xctr (_ct (_)r p + PAAc I ('6))Xcl < Xclr Xct (4.7)

Since AA('6)=_ r "OiAi is affine in vector O, (4.7)
i=l

imposes a convex constraint on O, and the set of all

feasible solutions to the equation gives the bound

on 0.

Since

xctr(AActTp+PAAcl)Xcll<xclTXcl_P + e_ct I
and

.-Ill

'
(4,7) holds if the right most tenn in the above

inequality is less than 1, Since P is a function of
time, a more conservative bound on the allowable
estimation error is to force the maximum value of

the right most term in the above inequality to be

less than 1. Therefore the claim of the theorem

holds.



In fact, if (4.4) satisfies the quadratic stability [5],

which is guaranteed by the existence of a constant
P=pr>o such that (4.6) is a Lyapunov function, the
calculation of the allowable estimation error bound

can be simplified. Such constant P, if exists, can be
obtained by applying a standard linear matrix

inequality solver to the following problem

P>O, (Ac_)TP+PAj'<O'ct j=l ..... 2 r

where AJl's describe the following polytopic linear

differential inclusion

2cl(t)=Acl(6)Xcl(t) ' Acl(6)_: - CO{Acl,..,l " A2rcl}

In this case,

r T )-1

will guarantee the quadratic stability of the closed-
loop system. Note that the right hand side is now

independent of time.

5. Simulation Results

Figure 6.1 shows the measured roll rates of a
simulated scenario for the NASA-Dryden model --
a coordinated turn, carried out at an altitude of

18400 feet and an airspeed of 650 feet/second --

using the stabilators and the rudder. The reference
signal model is the same as that in [14] where much
effort is devoted to the reference model selection.

The stabilator is experiencing a control
effectiveness loss at 0%, 15% and 50%,

respectively. The control effectiveness loss results
in the stabilator position error directly, it is
assumed that the control effectiveness loss estimate

is accurate. From the roll rate response, it can be
seen that the controlled system carries out the

required task appropriately when the controller is
scheduled according to the estimated fault effect

parameter 0. It is also shown in Figure 6.1 that the
required task cannot be fulfilled without treating the
fault effect parameter as additional scheduled
variables. When control effectiveness loss is at

15%, and at 50%, the polytopic FLPV control

system without scheduling exhibits severely
degraded performance, and becomes unstable,
respectively. We therefore conclude that fault

tolerance is achievable by using the polytopic
FLPV controller.

Figure 6.2 shows the simulation results under a
15% 1,3ss of stabilator control effectiveness. This
time different levels of control effectiveness
estimation error are introduced. These level are 0%,

50%, 100%, and 150%, respectively, with respect
to the simulated control effectiveness loss. It is

observed that the controlled system demonstrates a

satisfactory performance when estimation error is
sufficiently small, and the controlled system
becomes unstable when the estimation error
reaches. The actual allowable bound can be

estimated using the formula provided in section 4.
Within the estimation error bound, the system

performance degrades in terms of overshoot and
tracking accuracy but the stability remains.

6. Conclusions

The polytopic FLPV method is used in this paper to
achieve fault tolerant control demonstrated through

the NASA-Dryden aircraft model [_1.The effects of
faults in the aircraft, in particular, loss of stabilator
control effectiveness, are modeled as affine time-

varying parameters entering the parameters of the
state .,,pace description. The system potentiality to
allow the recovery of performance after a fault
occurrence is investigated by carrying out the

reconfigurability computation. The polytopic
contrc.ller is designed based on the FLPV model
where the fault effect parameters take their
estimated values. Bounds within which the closed-

loop system stability remains are derived for the
fault effect parameter estimation errors. For the
stabilator control loss case, it is observed that the

polytopic FLPV controller offers satisfactory fault
toleraace, provided that the estimation errors for
fault ¢ffect parameters are sufficiently small. Our
ongoiag effort in this area includes further
mode ing effort to obtain FLPV description of the
aircraft model, development of robustness polytopic

FLP_ synthesis method with respect to fault effect
parameter estimation, and the full scale nonlinear
simulation of the controlled system.
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